CPS510-01: Database Systems |

Movie Store DBMS

Group 5

Janice Zhu, Dalton Crowe, Fadi Al-Shabi
2022-11-30

APPICATION DESCIIPTION ..eeieiiiiieiieeitie ettt ettt et sh e st esb e s ab e e s bt e e sabe e bt e e sabe e b et e saseeabe e e sabeebeeesnneenteesaneeneas 1
ER IMIOTEL ..ttt sttt ettt b e b e bt e bt et s ot sh e e s Rt e Rt et e R et R et e b e e Rt e R e e Rt e Rt seeesaeesreenneereenneene 2
SQL SOUICE COUR....e ettt ettt ettt s ettt e st e e sa bt e s ab e e e bt e e sab e e ab bt e s ab e e bb e e sab e e bt e e sabe e b et e sabeeabe e e smbeebeeessneenbeesnneeneis 3
CrEATE TADIES ..ttt b ettt ettt e b e bt b e bt e b e e e bt e s b e e e be e e b e e e bt e s bt e eabee s beeenee s 3
LT o= L 0 41T 0 Al 1= o] LSS 3
(CT=T 0TS -] o1 [T TSP OO TP PRSP PPTRRPP 3
PrOTUCTION Tabl. ... ittt sttt e st e e it e s bt e sbt e e st e e e nb e e sabeesnteesaneenees 3

DT g=To1 o] gl 1] o =TT T OSSO UR PRSPPI 3
¥ o] g - | o] [T T TSP PSPT PP OPPPPROP 3
Card_TYPE TaDI ...ttt sttt s bt e et e st e e it e s bt e et e s b e e et esbe e et e sbeeearee s 3
0] o] (o) V7T =1 o 1SRRI 4
MOVIE_LIDIary Tablecooeiiieeeee et sttt e st e bt e s b e s st e e sabeesnt e e saneenaees 4
GENTE_OF TADIE .ttt ettt a e bt b e b e et e e bt st e s he e sheesbe et e eabeeateehbesbe e bt enbeeabeeatesatenaas 4
PrOdUECES TabBIE ..t e st st s bt e bt ettt e s e b e e Rt e st e nesanesieesreenne e reenneene 4

PN T o T=T= L [T 1= o LSS 5
Payment_IMethod Tableooiii ettt et e st esab e e snt e e saneenaeas 5
(OUISy o] L= i =T« [T U RO PP PP 5
(I oo T G N =T 1oF Tt A o o T - |] =S 5
ACCESS_IMOVIE TADIE ...t ettt e b e e bt e sab e e bt e e sae e e be e e sabeenne e e saneeneas 6
0T o1 =L S 1= o] 1= 3SR 7
LT o= L 0 41T 0 Al 1= o LRSS 7
EMPIOYEE TABIE ..ttt s esa e st e e et e e st e e e ab e e s abe e he e e s b e e bt e e sabeennt e e saneenes 7
(07 T o I Y7 LT =1 1 L= PSS 8
LCT=T T <IN I o1 [T T U RO PP P 8
Yo o] g - | o] [T PP T PP PSPT PP OPPPPPOP 9
DT =To1 o T 1] o =TT PSP URO PP 10
PrOQUCEION TabBIE..cueiiiieiieee et et s st she e s bt ettt e e e es e e s b e e re e reeanesanesanenaee 10
PrOQUCES TabBI@ ...ttt s e b et e st e e b et e sab e e bt e e bt e s be e e saeeebee e seesbeeenneenane 11
AV o T=Y o Y/ = o oo Yo I 1= o LSS 11
CUSTOMEE TADI@...niiiieie et st st s bt e bt et e st e s e e s b e e s b e e reenesanesaeesreenreenneennens 11
GENTE_OF TADIE ..ttt a e bbbt ettt sht e s bt e s bt et e eab e eh e e ebtesbe e beebeeabesatesaeesaeebeenteens 12
(OIS o0 a1 G N =T 1oF= T A o o T - | o =SS 12

PN T o T=T= L [I =Y oL SRRSO 13

Y Lo XV LT N oY= T VA IF=1 o] [P RUPR 14

F Yool T 1Y [VTSI I o1 LSS RR RN 15
SIMIPIE QUUBTIES ..ttt ettt ettt sttt st e st e st e st e s abeesabee s beesabeesabeeeabeesabeeeabeesabaeeabeesabeesnbeesabaesnbeesbaesseenans 16
AAVANCEU QUETIS ...ttt ettt ettt e st e st esa bt e s a bt e ettt e s abeeabe e e sabe e b et e eabe e be e e aaeeebeeeasbesabbeeaseeebeeebeesbaeennnenane 19
YL PPN 22

DIFOP VIBW ittt ettt et ettt e e e e e et e e e e e e e e e e et et et et e e et et e e e e et e e et et eeeaetee et et et eteeetetetetetererereeererererens 22

LINUX SNEIT SOUICE COUE......ciiiiiiiieiiieeee ettt ettt ettt s b et e sat e s bt e e bt e e be e e s sbe e be e e sabeebeeessneenneeesaneenees 23
INOFMATIZATION 1.ttt ettt st st e s bt e r et e e e s b e e s b e e bt e ar e e st saeesreesreenneenneeneeeneenreenreen 25
UL g YoruToT g ol 1T o =T g Vo [=T o Tol =T3RS 25
K 7 T S P PO UPPPUUOPTPPP 25
BN ettt ettt st h e h et e e R e R e e R e e Rt Rt e et She e she e e Rt e Rt e E e e et en e e s he e R e e Rt e r e e ne s e saeenee 26
LU= T TY=To I Yo o [or= [[SN 30
Installation INSErUCTIONS (WINGOWS)eiiiiiiiee ettt ettt e ettt e e ettt e e et e e e e te e e e eetbeeeeeataeeeeasaeeeesbeeeaenseeeennnenas 32
I YA [o] T 1Y =] o T U UUPPRN 33
SIMIPIE QUBTIES ..ttt ettt sttt st e st e st e e st e e s beeeabeesabeesabeesabeeeabeesabeesabeesabaeeabeesabaeenbeesabaesnseesbaeensaenans 33
AQVANCEU QUETIS ...cntieiteeeitte ettt ettt et sa et esa bt e st e e abt e e s ab e e ab et e sabe e b et e aabe e be e e sae e e beeeasbeeabbeeasneeabeeeaneesbeeenneesane 33

(O To T o T=) = 1 (=T 0 0 (=T 0] &SR UUPPN 34

APPLICATION DESCRIPTION

The online movie store allows people to search for their favorite movies with multiple filtering options based on
genres, year released, director, and other criteria. The online store will enable people to buy or rent movies.
Customers who choose to rent the movie have 30 days to watch the movie. Once they start streaming the movie,
they have up to 48 hours to finish it. Customers who buy the movie can download it to their devices.

The employee can add, remove, and modify the digital movie entries, as well as customer table entries. The
employee can add, remove or manage its movie metadata specifically genres, release date, actors, directors, etc.

A customer will have attributes like email, password, billing address, and payment info. They can search the
database for movies they might be interested in purchasing by specifying a title, genre, or associated performers
and directors. Upon selection of a desired movie title, the price will be displayed. Payment will be completed by
charging the saved credit card on file before the user has access to the movie. Upon successful payment, a
timestamp will be added to the customer’s film to keep track of both purchase history and remaining rental time
left if applicable.

ER MODEL

,_‘

1 Company

Controls

N
M
Movie_library
M

G,
G

Appear_in

SQL SOURCE CODE

CREATE TABLES

DEPARTMENT TABLE

CREATE TABLE department (
department id NUMBER PRIMARY KEY,
department name VARCHAR2 (50) NOT NULL,
department location VARCHARZ2 (50) NOT NULL

)

GENRE TABLE

CREATE TABLE genre (
genre name VARCHARZ2 (50) PRIMARY KEY,
genre popularity NUMBER DEFAULT 0

);

PRODUCTION TABLE

CREATE TABLE production (

production id NUMBER PRIMARY KEY,
production name VARCHARZ2 (50) NOT NULL,
production review NUMBER DEFAULT 0

)i

DIRECTOR TABLE

CREATE TABLE director (
director id NUMBER PRIMARY KEY,
director first name VARCHARZ2 (50) NOT NULL,
director last name VARCHAR2(50) NOT NULL,
director review NUMBER DEFAULT 0

);

ACTOR TABLE

CREATE TABLE actor (
actor_ id NUMBER PRIMARY KEY,
actor first name VARCHAR2 (50) NOT NULL,
actor last name VARCHAR2 (50) NOT NULL,
actor review NUMBER DEFAULT 0

);

CARD_TYPE TABLE

CREATE TABLE card type(
card num NUMBER PRIMARY KEY,
card type varchar(50) NOT NULL
)

EMPLOYEE TABLE

CREATE TABLE employee (
employee id NUMBER,
department id NUMBER NOT NULL,
work hours NUMBER NOT NULL,
employee first name VARCHAR2 (50) NOT NULL,
employee last name VARCHAR2 (50) NOT NULL,
employee gender VARCHAR2 (50),
employee dob DATE,
employee province VARCHAR2 (50) NOT NULL,
employee city VARCHARZ (50) NOT NULL,
employee street VARCHAR2Z (50) NOT NULL,
employee postal code VARCHAR2 (50) NOT NULL,
CONSTRAINT employee id PRIMARY KEY (employee id),
CONSTRAINT department fk FOREIGN KEY (department id) REFERENCES department
(department id)
);

MOVIE_LIBRARY TABLE

CREATE TABLE movie library (

movie id NUMBER,

director id NUMBER NOT NULL,

movie name VARCHARZ (50) NOT NULL,

movie rating VARCHAR2 (50) NOT NULL,

movie review NUMBER DEFAULT O,

movie price NUMBER NOT NULL,

release date DATE,

synopsis VARCHARZ2 (200),

CONSTRAINT movie pk PRIMARY KEY (movie id),

CONSTRAINT director fk FOREIGN KEY (director id) REFERENCES director
(director_ id)

)

GENRE_OF TABLE

CREATE TABLE genre of (

movie id NUMBER NOT NULL,

genre name VARCHAR2 (50) NOT NULL,

CONSTRAINT movie genre fk FOREIGN KEY (movie id) REFERENCES movie library
(movie id),
CONSTRAINT genre fk FOREIGN KEY (genre name) REFERENCES genre (genre name)
)i

PRODUCES TABLE

CREATE TABLE produces (

movie id NUMBER NOT NULL,

production id NUMBER NOT NULL,

CONSTRAINT movie produces fk FOREIGN KEY (movie id) REFERENCES
movie library (movie id),

CONSTRAINT production fk FOREIGN KEY (production id) REFERENCES production
(production id)

)

APPEAR_IN TABLE

CREATE TABLE appear in (

movie id NUMBER NOT NULL,

actor id NUMBER NOT NULL,

CONSTRAINT movie actor fk FOREIGN KEY (movie id) REFERENCES movie library
(movie id),

CONSTRAINT actor fk FOREIGN KEY (actor id) REFERENCES actor (actor_ id)
)

PAYMENT_METHOD TABLE

CREATE TABLE payment method (
payment method id NUMBER,
customer province VARCHAR2 (50) NOT NULL,
customer city VARCHARZ2 (50) NOT NULL,
customer street VARCHARZ2(50) NOT NULL,
customer postal code VARCHAR2(50) NOT NULL,
card name VARCHAR2(50) NOT NULL,
card num NUMBER NOT NULL,
card cvv NUMBER NOT NULL,
card expire date DATE NOT NULL,
CONSTRAINT payment method pk PRIMARY KEY (payment method id)
)

CUSTOMER TABLE

CREATE TABLE customer (

customer id NUMBER,

payment method id NUMBER NOT NULL,

customer name VARCHARZ2 (50) NOT NULL,

customer email VARCHARZ2(50) NOT NULL,

customer password VARCHARZ (50) NOT NULL,

CONSTRAINT customer pk PRIMARY KEY (customer id),

CONSTRAINT payment method fk FOREIGN KEY (payment method id) REFERENCES
payment method (payment method id)
)

CUSTOMER_TRANSACTION TABLE

CREATE TABLE customer transaction (

transaction id NUMBER,

payment method id NUMBER NOT NULL,

customer id NUMBER NOT NULL,

transaction date DATE NOT NULL,

CONSTRAINT transaction pk PRIMARY KEY (transaction_ id),

CONSTRAINT payment method id fk FOREIGN KEY (payment method id) REFERENCES
payment method (payment method id),

CONSTRAINT customer id fk FOREIGN KEY (customer id) REFERENCES customer
(customer id)

)’

ACCESS_MOVIE TABLE

CREATE TABLE access movie (

access_id NUMBER,

department id NUMBER NOT NULL,

transaction id NUMBER NOT NULL,

movie id NUMBER NOT NULL,

accesss_start date DATE NOT NULL,

access _end date DATE,

CONSTRAINT access pk PRIMARY KEY (access id),

CONSTRAINT department id acc fk FOREIGN KEY (department id) REFERENCES
department (department id),

CONSTRAINT transaction acc fk FOREIGN KEY (transaction id) REFERENCES
customer transaction (transaction id),

CONSTRAINT movie acc_fk FOREIGN KEY (movie id) REFERENCES movie library
(movie id)

)

POPULATE TABLES

DEPARTMENT TABLE

-—(department id, 'department name', 'location')
INSERT INTO department
VALUES
(01, '"Marketing', 'Toronto'):;
INSERT INTO department
VALUES
(02, '"Human Resources', 'Ottawa');

EMPLOYEE TABLE

--Insert values in employee table
INSERT INTO employee
VALUES
(
0oooo1, 01, 1440, 'Igor', 'Mathewson',
'Male', '1993 - 11 - 03', 'Ontario',
'Toronto', '1637 Eglinton Avenue',
'M4P 1A6'
)
INSERT INTO employee
VALUES
(
00002, 01, 7488, 'Lidia', 'Ardelean',
'Female', '1974-06-24', 'Alberta',
'Veteran', '3046 Pine Street', 'TOC 2S50'
)
INSERT INTO employee
VALUES
(
00003, 02, 12480, 'Hilda', 'Danell',
'Female', '1975-01-06', 'British Columbia',
'Victoria', '4716 Burdett Avenue',
'vey 1Y7'!
)
INSERT INTO employee
VALUES
(
0oooo4, 01, 1920, 'Jordan', 'Okonkwo',
'Male', '2000-10-27', 'Ontario',
'Etobicoke', '267 Queen Elizabeth Boulevard',
'M87 1M3'
)
INSERT INTO employee
VALUES
(
00005, 01, 3744, 'Cadice', 'Lambert',

'Male', '1977-01-22"', 'Quebec', 'Notre Dame De La

'792 rue des Eglises Est', 'J0X 2L0'
);

Salette',

CARD_TYPE TABLE

INSERT INTO card type
VALUES

(4, '"Visa');
INSERT INTO card type
VALUES

(5, 'Mastercard');
INSERT INTO card type
VALUES

(6, 'Discover Card');

GENRE TABLE

-—INSERT INTO genre VALUES ('genre name',genre popularity)
INSERT INTO genre
VALUES

('"Action', 10);
INSERT INTO genre
VALUES

('Adventure', 7);
INSERT INTO genre
VALUES

('Fantasy', 8);
INSERT INTO genre
VALUES

('Comedy', 9);
INSERT INTO genre
VALUES

('Drama', 6);
INSERT INTO genre

VALUES

('Romance’', 5);
INSERT INTO genre
VALUES

('Crime', 6);
INSERT INTO genre
VALUES

('Horror', 5);
INSERT INTO genre
VALUES

('Family', 06);

ACTOR TABLE

-—INTO actor VALUES (actor id, 'first name', 'last name',

--Actors in Docter Strange
INSERT INTO actor
VALUES
(
000001, 'Benedict', 'Cumberbatch',
9
)
INSERT INTO actor
VALUES
(000002, 'Chiwetel', 'Ejiofor', 8):
INSERT INTO actor
VALUES
(000003, 'Rachel', 'McAdams', 8);

--Actors in Jumaniji
INSERT INTO actor
VALUES
(000004, 'Dwayne', 'Johnson', 10);
INSERT INTO actor
VALUES
(000005, 'Karen', 'Gillan', 7);
INSERT INTO actor
VALUES
(000006, 'Kevin', 'Hart', 10);

--Actors in Guardians of Galaxy
INSERT INTO actor
VALUES

(0007, 'Chris', 'Pratt', 9);
INSERT INTO actor
VALUES

(0008, 'Vin', 'Diesel', 7);
INSERT INTO actor
VALUES

(0009, 'Bradley', 'Cooper', 6);

--Actors in Beauty and the Beast
INSERT INTO actor
VALUES

(0010, 'Emma', 'Watson', 9);
INSERT INTO actor
VALUES

(0011, 'Dan', 'Stevans', 06);
INSERT INTO actor
VALUES

(0012, 'Luke', 'Evans', 6);

actor review)

DIRECTOR TABLE

--INTO director VALUES (director id,'first name', 'last name')
--Director for Docter Strange
INSERT INTO director
VALUES
(0001, 'Scott', 'Derrickson',6 8);

--Director for Jumanji
INSERT INTO director
VALUES
(0002, 'Jake', 'Kasdan', 7);

--Director for Guardian of the Galaxy
INSERT INTO director
VALUES

(0003, 'James', 'Gunn', 9);

--Director for Beauty and the Beast
INSERT INTO director
VALUES

(0004, 'Bill', 'Condon', 6);

PRODUCTION TABLE

--INTO production VALUES (production id, 'production name', production review)
--Producer for Docter strange, Guardian of the Galaxy
INSERT INTO production
VALUES
(0001, 'Marvel Studios', 10):;

--Producers for Jumaniji
INSERT INTO production
VALUES
(0002, 'Columbia Pictures', 9);
INSERT INTO production
VALUES
(
0003, 'Matt Tolmach Productions',
7
)
INSERT INTO production
VALUES
(
0004, 'Seven Bucks Productions',
6
)
INSERT INTO production
VALUES
(0005, 'Radar Pictures', 06);

--Producer for Beauty and the Beast
INSERT INTO production
VALUES

(0006, 'Walt Disney Pictures', 10);

10

PRODUCES TABLE

INSERT INTO produces
VALUES

(00001, 0001);
INSERT INTO produces
VALUES

(00002, 0002);
INSERT INTO produces
VALUES

(00002, 0003);
INSERT INTO produces
VALUES

(00002, 0004);
INSERT INTO produces
VALUES

(00003, 0001);
INSERT INTO produces
VALUES

(00004, 0006);

PAYMENT_METHOD TABLE

INSERT INTO payment method
VALUES
(
0001, 'Manitoba', 'Dauphin', '585 Main St',
'R7N 2T3', 'Ema Wallis', 5024007180587064,
665, '2025-05-01"
);
INSERT INTO payment method
VALUES
(
0002, 'British Columbia', 'Vancouver',
'1011 Tolmie St', 'VoOR 4C5', 'Marcelino Metz',
4539613673997583, 554, '2022-03-01"
)

CUSTOMER TABLE

INSERT INTO customer
VALUES
(
00001, 0001, 'Ema Wallis', 'EmaW@email.com',
'EmaWl23pw'
);
INSERT INTO customer
VALUES
(
00002, 0002, 'Marcelino Metz', 'MarcelinoM@email.com',
'MarcelinoM123pw'

)

11

GENRE_OF TABLE

INSERT INTO genre of
VALUES

(00001, '"Action');
INSERT INTO genre of
VALUES

(00001, 'Adventure');
INSERT INTO genre of

VALUES

(00001, 'Fantasy'):
INSERT INTO genre of
VALUES

(00002, 'Action');
INSERT INTO genre of
VALUES

(00002, 'Adventure');
INSERT INTO genre of
VALUES

(00002, 'Comedy'):;
INSERT INTO genre of
VALUES

(00003, 'Action');
INSERT INTO genre of
VALUES

(00003, 'Adventure');
INSERT INTO genre of
VALUES

(00003, 'Comedy'):
INSERT INTO genre of
VALUES

(00004, 'Adventure');
INSERT INTO genre of
VALUES

(00004, 'Family');
INSERT INTO genre of
VALUES

(00004, 'Fantasy'):

CUSTOMER_TRANSACTION TABLE

INSERT INTO customer_transaction
VALUES

(000001, 0001, 00001, '2015-01-16');

INSERT INTO customer_transaction
VALUES

(000002, 0001, 00001, '2016-12-23');

INSERT INTO customer transaction
VALUES

(000003, 0002, 00002, '2020-08-06');

INSERT INTO customer transaction
VALUES

(000004, 0001, 00001, '2021-08-06');

INSERT INTO customer transaction
VALUES

(000005, 0002, 00002, '2022-08-06"');

12

APPEAR_IN TABLE

INSERT INTO appear in
VALUES

(00001, 000001);
INSERT INTO appear in
VALUES

(00001, 000002);
INSERT INTO appear in
VALUES

(00001, 000003);
INSERT INTO appear in
VALUES

(00002, 000004);
INSERT INTO appear in
VALUES

(00002, 000005) ;
INSERT INTO appear in
VALUES

(00002, 000006) ;
INSERT INTO appear in

VALUES

(00003, 000007);
INSERT INTO appear in
VALUES

(00003, 000008);
INSERT INTO appear in
VALUES

(00003, 000009) ;
INSERT INTO appear in
VALUES

(00004, 000010);
INSERT INTO appear in
VALUES

(00004, 000011);
INSERT INTO appear in
VALUES

(00004, 000012);

13

MOVIE_LIBRARY TABLE

--Insert values in movie library table (Docter Strange)
INSERT INTO movie library
VALUES
(

00001, 0001, 'Docter Strange', 'PG-13',

9, 50, '2016 - 11 - 04', 'While on a journey of physical and spiritual
healing, a brilliant neurosurgeon is drawn into the world of the mystic
arts.'

)

--Insert values in movie library table (Jumanji)
INSERT INTO movie library
VALUES
(

00002, 0002, 'Jumanji: Welcome to the Jungle',

'pG-13', 7, 30, '2017 - 12 - 20",

'Four teenagers are sucked into a magical video game, and the only way
they can escape is to work together to finish the game.'

)

--Insert values in movie library table (Guardians of Galaxy)
INSERT INTO movie library
VALUES
(

00003, 0003, 'Guardians of the Galaxy',

'pG-13', 7, 50, '2014 - 07 - 01",

'A group of intergalactic criminals must pull together to stop a
fanatical warrior with plans to purge the universe.'

);

--Insert values in movie library table (Beauty and the Beast)
INSERT INTO movie library
VALUES
(

00004, 0004, 'Beauty and the Beast',

'pG', 9, 60, '2017 - 03 - 17', 'A selfish Prince is cursed to become a
monster for the rest of his life, unless he learns to fall in love with a
beautiful young woman he keeps prisoner.'

)

14

ACCESS_MOVIE TABLE

--customer 1 purchase movie 3 (guardians of galaxy)
INSERT INTO access movie
VALUES
(
0ooo001, 01, 000001, 00003, '2015-01-16"',
NULL
)

--customer 1 rent movie 1 (doc strange) for 1 month
INSERT INTO access movie
VALUES
(
000002, 01, 000002, 00OCO1, '2016-12-23',
'2017-01-23"
)

--customer 2 rent movie 2 (jumanji) for 3 month
INSERT INTO access _movie
VALUES
(
000003, 01, 000003, 00002, '2020-08-06"',
'2020-11-06"
);

--customer 1 purchase movie 2 (jumanji) now 4
INSERT INTO access movie
VALUES
(
000004, 01, 000004, 00004, '2021-08-06"',
NULL
);

--customer 2 purchase movie 3 (jumanji)
INSERT INTO access movie
VALUES
(
000005, 01, 000005, 00003, '2021-08-06"',
NULL

);

15

SIMPLE QUERIES

--List hours worked
SELECT
employee first name,
SUM (work hours)
FROM
employee
GROUP BY
employee first name;

--List all employees in marketing by seniority

SELECT
employee first name,
employee last name,
work hours as seniority in marketing dep
FROM
employee
WHERE
department id =
ORDER BY
work hours DESC;

--List all movies and their release date
SELECT

movie name,

'released on:',

release date
FROM

movie library;

--List all movies accessed
SELECT
access_id,
transaction id,
movie id,
accesss_start date,
access_end date

FROM

access_movie
WHERE

accesss_start date <= '2020-12-01"
ORDER BY

accesss_start date DESC;

--List customers in alphabetical order
SELECT
*
FROM
customer
ORDER BY
customer name;

16

(most

hours)

--List all actors from highest review
SELECT

*
FROM

actor
ORDER BY

actor review DESC;

--List all movies and with a price of 50
SELECT
*
FROM
movie library
WHERE
movie price >= 50;

--List all movies with a review of 8 or more, order by descending
SELECT
*
FROM
movie library
WHERE
movie review >= 8§
ORDER BY
movie review DESC;

--List only movie id and actor id

SELECT
movie id,
actor_id

FROM
appear in

ORDER BY

movie id DESC,
actor_id asc;

--List all employees in marketing department sorted by name in ascending
order
SELECT
employee first name as employees in marketing
FROM
employee
WHERE
department id = 001
ORDER BY
employee first name;

--List all movie (movie name and rating) of a director
SELECT
movie name,
movie rating
FROM
movie library
WHERE
movie rating = 'PG-13'
AND director id = 001;

17

--List all movies (movie name and review only) in
review of 9 or more or PG with eview of 5 or more
SELECT

movie name,

movie review
FROM

movie library
WHERE

(

o

movie review >= 9

AND movie rating = 'PG-13'
)
OR (

movie review >= 5

AND movie rating = 'PG'

)

--08: List all movies (name and director) who are
SELECT
movie name,
director id
FROM
movie library
WHERE
movie rating <> '"PG-13'";

18

movie rating PG-13 with a

not PG-13

ADVANCED QUERIES

---lists num of movies for each genre with popularity more than 7
SELECT
genre name,
COUNT (movie id) AS num movies
FROM
genre of
WHERE
EXISTS (
SELECT
genre popularity
FROM
genre
WHERE
genre of.genre name = genre.genre_name
AND genre popularity >
)
GROUP BY
genre name
HAVING
COUNT (movie_ id) > 0;

---1list for each movie, the number of transactions on a movie before december
1st 2020
SELECT
movie id,
COUNT (transaction_ id) AS num transactions
FROM
access _movie
WHERE
EXISTS (
SELECT
transaction id
FROM
customer_transaction
WHERE
customer transaction.transaction id = access movie.transaction id
AND transaction date < '2020-12-01"
)
GROUP BY
movie id;

19

-—this MINUS returns all movie id values that are in the movie library table
-—-group by statement groups the rows that have same values into summary rows
---1list number of departments who did not access start dates before 2020-10-
01
SELECT
COUNT (department id) AS num departments
FROM
(
SELECT
department id
FROM
department MINUS
SELECT
department id
FROM
access _movie
WHERE
accesss_start date < '2020-10-01"
)
GROUP BY
(department id);

--the UNION operator is used to combine the result-set of two or more SELECT
statements
---list a count of everyone (employees and customers) in each province
SELECT
employee province,
COUNT (*) AS total num people
FROM
(
SELECT
employee id,
employee province
FROM
employee
UNION
SELECT
payment method id,
customer province
FROM
payment method
)
GROUP BY
employee province;

20

-—--lists all movies by id with num of actors with a review more than 8

SELECT
movie id,
COUNT (actor id) AS num actors
FROM
appear_ in
WHERE
EXISTS (
SELECT
actor id
FROM
actor
WHERE
actor.actor id = appear_ in.actor id
AND actor review > &8
)
GROUP BY
movie id
ORDER BY
movie id;

21

VIEWS

CREATE VIEW potential awarded (
ActorID, First Name, Last Name, Review
) AS (
SELECT
actor_id,
actor first name,
actor last name,
actor review
FROM
actor
WHERE
actor review >
) WITH READ ONLY;

CREATE VIEW customer card type (
customer id, customer name, card type,
card expire date

) AS (

SELECT
customer id,
customer name,
payment method.card type,
payment method.card expire date
FROM
customer,
payment method
WHERE
customer.payment method id = payment method.payment method id

)

CREATE VIEW directed by (
movie name, director first name,
director last name
) As (
SELECT
movie name,
director.director first name,
director.director last name
FROM
movie library,
director
WHERE
movie library.director id = director.director id

)

DROP VIEW

DROP

VIEW potential awarded;
DROP

VIEW customer card type;
DROP

VIEW directed by;

22

LINUX SHELL SOURCE CODE

#!/bin/sh

MainMenu ()

{

while ["SCHOICE" != "START"]

do

clear

echo

echo "| Oracle All Inclusive Tool

‘H

echo "| Main Menu - Select Desired Operation(s):

‘H

echo "| <CTRL-Z Anytime to Enter Interactive CMD Prompt>
‘H

echo "—————————— -

echo " $IS SELECTEDM M) View Manual"
echo n n

echo " SIS SELECTED1 1) Drop Tables"

echo " SIS SELECTED2 2) Create Tables"

echo " SIS SELECTED3 3) Populate Tables"
echo " $IS SELECTED4 4) Query Join Tables"
echo " $IS SELECTEDS 5) Query Count Tables"
echo " SIS SELECTED6 6) Drop Views"

echo " $IS SELECTED7 7) Create Views"

echo " SIS SELECTED8 8) Query Views"

echo " "

echo " $IS SELECTEDX X) Force/Stop/Kill Oracle DB"
echo " "

echo " $IS_SELECTEDE E) End/Exit"

echo "Choose: "

read CHOICE

if ["SCHOICE" == "0"]

echo "Nothing Here"
read -p "Press any key to resume

elif ["SCHOICE" == "1"]
then

bash drop tables.sh
Pause

read -p "Press any key to resume

elif ["SCHOICE" == "2"]
then

bash create tables.sh
Pause

read -p "Press any key to resume

23

elif ["SCHOICE" == "3"]
then

bash populate tables.sh
Pause

read -p "Press any key to
elif ["SCHOICE"™ == "4"]
then

bash join queries.sh
Pause

read -p "Press any key to
elif ["SCHOICE" == "5"]
then

bash count queries.sh
Pause

read -p "Press any key to
elif ["SCHOICE" == "6"]
then

bash drop views.sh

Pause

read -p "Press any key to
elif ["SCHOICE" == "7"]
then

bash create views.sh
Pause

read -p "Press any key to
elif ["SCHOICE" == "8"]
then

bash view queries.sh
Pause
read -p "Press any key to

elif ["SCHOICE" == "E"]
then

exit

fi

done

}

#--COMMENTS BLOCK--
Main Program
#--COMMENTS BLOCK--
ProgramStart ()

{

StartMessage

while [1]

do

MainMenu

done

}

ProgramStart

resume

resume

resume

resume

resume

resume

24

NORMALIZATION

FUNCTIONAL DEPENDENCIES

e department (department_id, department_name, department_location)
o department_id - department_name, department_location
e employee (employee_id, department_id, work_hours, employee_first_name, employee_last_name,
employee_gender, employee_dob, employee_province, employee_city, employee_street,
employee_postal_code)

o employee_id - department_id, work_hours, employee_first_name, employee_last_name,
employee_gender, employee_dob, employee_province, employee_city, employee_street,
employee_postal_code

e genre (genre_name, genre_popularity)
o genre_name - genre_popularity
e production (production_id, production_name, production_review)
o production_id = production_name, production_review
e director (director_id, director_first_name, director_last_name, director_review)
o director_id - director_first_name, director_last_name, director_review
e actor (actor_id, actor_first_name, actor_last_name, actor_review)
o actor_id - actor_first_name, actor_last_name, actor_review
e movie_library (movie_id, director_id, movie_name, movie_rating, movie_review, movie_price,
release_date, synopsis)

o movie_id = director_id, movie_name, movie_rating, movie_review, movie_price, release_date,
synopsis

e payment_method (payment_method_id, customer_province, customer_city, customer_street,
customer_postal_code, card_name, card_type, card_num, card_cvv, card_expire_date)

o payment_method_id - customer_province, customer_city, customer_street,
customer_postal_code, card_name, card_type, card_num, card_cvv, card_expire_date

e customer (customer_id, payment_method_id, customer_name, customer_email, customer_password)
o customer_id - payment_method_id, customer_name, customer_email, customer_password

e customer_transaction (transaction_id, customer_id, payment_method_id, transaction_date)
o transaction_id - transaction_date, customer_id, payment_method_id

e access_movie (access_id, department_id, transaction_id, movie_id, accesss_start_date, access_end_date)
o access_id - transaction_id, department_id, movie_id, access_start_date, access_end_date

3NF

The transitive dependency card_num -> card_type needed to be decomposed into a table named card_type,
containing attributes card_num and card_type. This table would be referenced to determine the card type based
on the first digit of the card number. The resultant tables are as follows:

e department (department_id, department_name, department_location)
o department_id - department_name, department_location

25

e employee (employee_id, department_id, work_hours, employee_first_name, employee_last_name,
employee_gender, employee_dob, employee_province, employee_city, employee_street,
employee_postal_code)

o employee_id - department_id, work_hours, employee_first_name, employee_last_name,
employee_gender, employee_dob, employee_province, employee_city, employee_street,
employee_postal_code

e genre (genre_name, genre_popularity)

o genre_name - genre_popularity

e production (production_id, production_name, production_review)

o production_id = production_name, production_review

e director (director_id, director_first_name, director_last_name, director_review)

o director_id - director_first_name, director_last_name, director_review

e actor (actor_id, actor_first_name, actor_last_name, actor_review)

o actor_id - actor_first_name, actor_last_name, actor_review

e movie_library (movie_id, director_id, movie_name, movie_rating, movie_review, movie_price,
release_date, synopsis)

o movie_id - director_id, movie_name, movie_rating, movie_review, movie_price, release_date,
synopsis

e payment_method (payment_method_id, customer_province, customer_city, customer_street,
customer_postal_code, card_name, card_num, card_cvv, card_expire_date)

o payment_method_id - customer_province, customer_city, customer_street,
customer_postal_code, card_name, card_num, card_cvv, card_expire_date

e card_type (card_num, card_type)

o card_num - card_type

e customer (customer_id, payment_method_id, customer_name, customer_email, customer_password)

o customer_id - payment_method_id, customer_name, customer_email, customer_password

e customer_transaction (transaction_id, customer_id, payment_method_id, transaction_date)

o transaction_id = transaction_date, customer_id, payment_method_id

e access_movie (access_id, department_id, transaction_id, movie_id, accesss_start_date, access_end_date)

o access_id -» transaction_id, department_id, movie_id, access_start_date, access_end_date

BCNF

To achieve BCNF, an algorithm was used as follows:

Relation:
payment_method (payment_method_id, customer_country, customer_province, customer_city, customer_street,
customer_postal_code, card_name, card_type, card_num, card_cvv, card_expire_date)

Step 1: Find out facts about the real world and list attributes and FD's
payment_method_id - customer_country, customer_province, customer_city, customer_street,
customer_postal_code, card_name, card_type, card_num, card_cvv, card_expire_date

26

card_num -> card_type
customer_province - customer_country

customer_postal_code - customer_country, customer_province

Step 2: Reduce the list of functional dependencies using polynomial algorithm
payment_method_id - customer_country
payment_method_id - customer_province
payment_method_id - customer_city
payment_method_id - customer_street
payment_method_id - customer_postal_code
payment_method_id - card_name
payment_method_id - card_type
payment_method_id = card_num
payment_method_id - card_cvv
payment_method_id - card_expire_date
card_num - card_type

customer_province - customer_country
customer_postal_code - customer_country

customer_postal_code - customer_province

Redundancy:
payment_method+ = {payment_method, customer_province, customer_country, ...}
payment_method+ = {payment_method, customer_postal_code, customer_country, customer_province, ...}

payment_method+ = {payment_method, customer_country, customer_province, customer_city, customer_street,
customer_postal_code, card_name, card_num, card_type, ...}

customer_postal_code+ = {customer_postal_code, customer_province, customer_country}

27

Step 3: Find the keys
LHS & NRHS = {payment_method_id}
NLHS & NRHS = {}

NLHS & RHS = {customer_city, customer_street, card_name, card_cvv, card_expire_date, card_type,
customer_country}

(payment_method_id)+ = {payment_method_id, customer_city, customer_street, customer_postal_code,
customer_province, customer_country, card_name, card_num, card_type, card_cvv, card_expire_date}

It’s a KEY

(payment_method_id, customer_province)+ = {payment_method_id, customer_province, customer_country,
customer_city, customer_street, customer_postal_code, card_name, card_num, card_type, card_cvv,
card_expire_date}

Its a KEY

(payment_method_id, customer_postal_code)+ = {payment_method_id, customer_postal_code,
customer_province, customer_country, customer_city, customer_street, customer_postal_code, card_name,
card_num, card_type, card_cvv, card_expire_date}

It is a KEY

(payment_method_id, card_num)+ = {payment_method_id, card_num, customer_city, customer_street,
customer_postal_code, customer_province, customer_country, card_name, card_num, card_type, card_cvv,
card_expire_date}

It is a KEY

Step 4: Derive the final schema by combining the FDs with its respective left-hand side

R1 (payment_method_id, customer_city, customer_street, customer_postal_code, card_name, card_num,
card_cvv, card_expire_date)

FD's:

{payment_method_id = customer_city, customer_street, customer_postal_code, card_name, card_num,
card_cvv, card_expire_date}

28

R2 (card_num, card_type)
FD's:
{card_num - card_type}

R3 (customer_province, customer_country)
FD's:
{customer_province - customer_country}

R4 (customer_postal_code, customer_province)
FD's
{customer_postal_code - customer_province}

29

GUI-BASED APPLICATION

The application for this project was
written in .net C#. This simple program
allows the user to explore the database
system, allowing for records to be
added, modified, or deleted. To the
right is an image of the main window
that the user can interact with.

¥ Movie Store DB

Simple Queries Advanced Queries Custom Query

Commit Revert

Test Connection

Create Tables

Current Table:

Populate Tables Drop Tebles

| 48 Movie Store DB

Simple Queries Advanced Queries Custom Query

Commit Revert

Test Connection

Create Tables

Current Table:

Populate Tables

Drop Tables

On first launch, the DBMS tables should
not yet exist, enabling the “create
tables” button located at the bottom of
the window. If any tables do exist, then
the “drop tables” button will be enabled
instead, allowing for the removal of all
related tables. The “populate tables”
button is only active after the current
instance of the program has created the
tables for the first time. This function fills
the tables with sample data. Along with
these three buttons is a fourth button
labeled “test connection,” that will
display a message if the connection is

valid or not. On the upper right side of the window is a drop-down box containing all tables in the database.

Selecting one from the list will populate the data grid allowing for data review or manipulation. Following this are

two cropped images of

¥ Movie Store DB

the populated data grid
and the insertion of a

Commit

Simple Queries Advanced Queries

Custom Query

Revert Current T

¥ Movie Store DB

Simple Queries Advanced Queries Custom Query

Commit Revert Current 1

single row.

GENRE_NAME

Adventure

GEMRE_POPULARITY

GENRE_NAME GENRE_POPULARITY

Fantasy

Comedy

Drama

Romance

Crime

Herrer

Family

Test Cennection

Create Tables

Action 10

Adventure

Fantasy

Comedy

Drama

Romance

Crime

Horror

Family

R R T - T = =R I)

Thriller

Test Connection

Create Tables

30

The next three images demonstrate the query functionality of the application. The menu-strip found at the top of

the window shows option for simple, advanced, and custom queries. Clicking on either the simple or advanced

queries will show a list of pre-
programmed options that were
loaded from the scripts directory.
Loading these scripts externally allows
for the simple addition, modification,
or removal of queries without the
requirement to recompile the main
executable. Within these two menus,
selecting any item will execute the
script query, and display the resultant
data (if any) in the data grid.

If the user requires a custom query
(typically for a search, but any
command is accepted), then the
custom query option can be selected
in the menu-strip. When this menu
item is selected, a dialog window
opens, and the user can type their
query in the provided textbox,
executing the command with the
appropriate button. This can be seen
in the final image below.

| 4® Movie Store DB - o x|

Simple Queries | Advanced Queries

List hours worked

Custom Query

List all employees in marketing by senierity (mest hours)
List all movies and their release date

List all movies accessed

List customers in alphabetical order

List all actors from highest review

List all movies and with a price of 50

List all movies with a review of 8 or maore, order by descending
List only movie id and actor id

List all employees in marketing department

List all movie (movie name and rating) of a director

List all movies (movie name and review only) in movie rating PG-13 with a review of 9 or more or PG with eview of 3 or more
Q8: List all movies (name and directer) whe are not PG-12

Test Cennection Create Tables Populate Tables Drop Tables

of Movie Store DB = o x

Simple Queries | Advanced Queries | Custom Cuery

lists num of movies for each genre with popularity more than 6

Com
list for each movie, the number of transactions on a movie before december 1st 2020

GENRE_N. list number of departments who did not access start dates before 2020-10-01
» list a count of everyone (employees and customers) in each province
Adventure] lists all movies by id with num of actors with a review mere than 8

Fantasy

Comedy

Drama

Romance

Crime

Horror

o w o o a W e

Family

Test Connection Create Tables Populate Tables Drop Tables
¥ Movie Store DB - O X
Simple Queries Advanced Queries Custorn Query
Commit Revert Current Table: i

Custom Query

Test Connection Create Tables Populate Tables

Drop Tables

31

INSTALLATION INSTRUCTIONS (WINDOWS)

To run the application on your own computer, first make sure the local system is connected through the TMU VPN
(vpn.scs.ryerson.ca). Without this connection, the application will fail to launch, displaying a connection error
message notification. Once the required connection has been made, locate the “binaries” directory that was
included alongside this document. Inside this folder will be two items: a “Scripts” directory containing the SQL
scripts used by the application, and the main executable named “Movie Store.exe”. Double click on the executable
to launch the application.

32

RELATIONAL ALGEBRA

SIMPLE QUERIES

e List hours worked
(@) nemployee_first_name, F sum work_hours (employee)
e List all employees in marketing by seniority (most hours)
(@) nemployee_first_name, employee_last_name, pwork_hours/seniority_in_marketing_dep (0department_id=1 (employee))
e List all movies and their release date
(e} nmovie_name, release_date (movie_libra ry)
e List all movies accessed
(@) naccess_id, transaction_id, movie_id, accress_start_date, access_end_date (O'access_start_date <='2020-12-01' (access_movie))
e List customers in alphabetical order
o customer
e List all actors from highest review
o actor
e List all movies and with a price of 50
O Omovie_price >=50 (Movie_library)
e List all movies with a review of 8 or more, order by descending
O Omovie_review >=8 (movie_library)
e List only movie id and actor id
0 Mmovie_id, actor_id (appear_in)
e List all employees in marketing department
o Pemployees_in_marketing/employee_first_name (0'department_id=001 (employee))
e List all movie (movie name and rating) of a director
(@) nmovie_name, movie_rating (O'movie_rating ='PG-13' AND director_id = 001 (movie_Iibra ry))
e List all movies (movie name and review only) in movie rating PG-13 with a review of 9 or more or PG with
a review of 5 or more
O Mmovie_name, movie_review (O(movie_rating = 'PG-13' AND movie_review >= 9) OR (movie_rating = 'PG' AND movie_review >= 5)
(movie_library))
e (8: List all movies (name and director) who are not PG-13

o Mmovie_name, director_id (Omovie_rating <> 'PG-13' (movie_Iibra ry))

ADVANCED QUERIES

e lists num of movies for each genre with popularity more than 7
O Mgenre_name, p(F count movie_id)/num_movies (Ogenre_popularity >7 (genre > genre_of))
e |ist for each movie, the number of transactions on a movie before December 1st 2020
(@) nmovie_id, p(F count transaction_id)/num_transactions (Otransaction_date <'2020-12-01' (customer_transaction >
access_movie))
e list number of departments who did not access start dates before 2020-10-01
O PI(F count department_id)/num_departments ((department - (Gaccesss_start_date < '2020-10-01' (access_movie)))
e list a count of everyone (employees and customers) in each province
O Memployee_province, p(F count *)/total_num_people (€Mployee U payment_method)
e lists all movies by id with num of actors with a review more than 8

©) nemployee_province, p(F count actor_id)/num_actors (O'actor_review >8 (actor X appea r_in))

33

CLOSING STATEMENTS

The design process throughout this project was a valuable learning experience. It demonstrated the advantages of
following a structured approach toward developing a DBMS with access through a client application. During this
project, our group identified several concepts that required refining. One notable change was the continual
modification of the ER-diagram and associated application description. As our group learned about the intricacies
of a DBMS, we discovered that this project would benefit from the added knowledge that we had obtained. The
most influential stage for change was database normalization. During this stage, tables were modified and deleted
to accommodate higher normalization views.

34

	Application Description
	ER Model
	SQL Source Code
	Create Tables
	Department Table
	Genre Table
	Production Table
	Director Table
	Actor Table
	Card_Type Table
	Employee Table
	Movie_Library Table
	Genre_Of Table
	Produces Table
	Appear_In Table
	Payment_Method Table
	Customer Table
	Customer_Transaction Table
	Access_Movie Table

	Populate Tables
	Department Table
	Employee Table
	Card_Type Table
	Genre Table
	Actor Table
	Director Table
	Production Table
	Produces Table
	Payment_Method Table
	Customer Table
	Genre_Of Table
	Customer_Transaction Table
	Appear_In Table
	Movie_Library Table
	Access_Movie Table

	Simple Queries
	Advanced Queries
	Views
	Drop View

	Linux Shell Source Code
	Normalization
	Functional Dependencies
	3NF
	BCNF

	GUI-Based Application
	Installation Instructions (Windows)

	Relational Algebra
	Simple Queries
	Advanced Queries

	Closing Statements

