Table of Content

LT T [T T T 1
CASE ANAIYSIS ceeiiiiiiiiiiiiiiiiiiiiiieietieeeeeeeeeeeeeeeeeeeeeeeeeteeeeeeeeeeeteeeeeeeeeeeeeeeeeteeeeteeteeteeeeeetteeteeteeteteeetettteetttttettttteetteeeeeaeaaans 2
1Y/ 11 o T o Yo] « TP PPPPPPPPPPPRPPIRS 2
) 1=\ 1ol Y 1= PO TSP PTOTUROPROP 3
D11y | ol o 1= OSSR 4
SO StAt e 5
THINK STATE -t sttt st s b e e b e s bt e s st et et e sb e e nhe e saeesane e 5

] =L] =1 TSP 5
FOPWAIA SAtO . ..e ittt st ettt e bt e sh e e sat e st e s bt e b e e bt e ameesme e et e ereenneens 6

[A - =Y OO TP RTUPRTOPRRUURRRUSRIN 7

24 T=d O] = PSSR 7
INEEISECHION STATE....eiiiieeiee e s e e s e e s e e s nr e e s anrene s 8
REVEISE STATE ..eiiiiiiiiiiiiiiii e 9
L1807 TUIN SEALE ..eeeitieeiie ettt ettt ettt e ettt e s bt e e s bt e e b et e s eeesabeeesneeesabeesneeesaneesseeesmreesanenesaneena 9
SYSEEM INIIAlIZAtION ..eeii e e et e e e et e e e e s eata e e e santaeeesaataeeeeentaeeeenns 9
N o] 8TV =l DL F 1 OO SPT 10
ADC INIIAHZATION ...ttt sttt sb e s st e s re st e b e bt e s re e st e eeereenreen 10
LD ettt ettt e e — e et e e e e e e e e a—eeeteeeee e e e nbeeeteeeeeea e anneeeteeeeeaa e annaeteeeeeeeaanrraeeeeeeeesaanrreaes 10
CIEAT BUFFEI ..ttt st st st st b e bt e s st s e st e et e bt e b e e sheesanesare e 10
L0103V 1 [o 11
(D11 o] VY= o 1Yo oSSR 11
INIEIAlIZATION. ..ee et s e s s r e s b e e e e e e s ne e e nreas 13
(611 | PSP PO PR PP 13
SN COMMANG ...ttt e s e e e st e s bt e sm e e e s b e e e ba e e smseesneeesareesareeenneeesareeennes 13

L AT a1 A6 T o T (=T TP PP P PRSPPI 13

L LAY 1 4 o= SO PP PP OPPTTUPPPPRRRN 13
Y=Ta Lo J D - PP TR PP RPN 14
POSITION CUISO ...ciiiiiiiiiiiiicii bbbt sab e e sba e s san e e sra e e sane s 14

LU T T L= 14

(D oY 0/ i TR PPRRRRRRRT 14

Y] [=Tot A Y=] o F o] SRR PR RRRUOPT 15

R AT SIS OIS .. uuuutuurttuertrrruursturrrererarrearaaareraeararerararararassrnsnsnrnnes 15
T T YA Co I AN 1 | F PRSP PP PP PP PPPPPPPPPRPRPPPRt 16

RN A =T 0 0 0 = U o 16
(=] =] =] 4 Lol =L NN 17
APPENAIX cevrrrrrnnnnnnnnnnnnnnssnsssisssssssssssssssssssssssss s sssnsnns 18

Introduction

The COE538: Microprocessor Systems eeBot Project presented a challenging task given the time
constraints imposed. This bot’s requirements are to successfully traverse a line-maze without getting
lost in three demonstration trials. This report outlines the successful implementation of this bot, as well
as the challenges and sacrifices faced.

The generalized decision-making sequence implemented was to read the guider sensors to determine
and act upon if left or right corrections were required to maintain adherence to the path. The outer
most left and right sensors were then checked for alternate paths (intersections) before the bot would
move forward incrementally. If an intersection was detected, the bot would move forward until it
passed the intersection line to guarantee that all available paths have been found. At this point, the bot
would choose, if available, to turn left, otherwise turn right. This was decided because it would result in
the least dead ends encountered in the given maze. See figure 1.

While this project was successful in its task, the methods used to accomplish this were not what was
originally planned. Initially the use of a PID function and adjusting the duty-cycle of the motors to
maintain a consistent and uniform direction of travel was decided, but given the time constraints,
additional testing required, and failed eeBot hardware supplied, this was scrapped to save time. In
addition to this, the historic path-memory of the robot was reduced to only retain the previous
intersection, but could be expanded if required. These sacrifices were made because it was decided that
the completion of the challenge was more important than how gracefully it performed.

In the end, the successful demonstration of the eeBot’s ability to autonomously navigate complex paths
showcased the effectiveness of the implemented guidance and control algorithms.

1yVv1S

6 Forward Destination

— -
—]

Operator triggers reversal

‘w
C

8]
4~
]

I

Figure 1: eeBot Guidance Challenge Maze Layout [1].

Case Analysis

Main Loop

The following code is the main execution loop that the eeBot cycles through. On startup, the applicable ports, ADC, and

LCD are initialized before entering the runtime cycle. On each pass through the main section, the guider sensors are read

first, followed by the bumpers. After this, an LCD refresh counter is compared against the desired refresh rate (every 20

cycles) and refreshes the display if conditions have been met; otherwise, continue to the dispatcher. Once the

dispatcher is complete, the program starts a short delay (see table 2) before starting the loop again.

;***

; MAIN CODE

;***

Entry:
_Startup:

MAIN

MAIN_ CONT

READ BUMPERS
bowON

bowOFF

sternON
sternOFF

LDS
CLI

JSR
JSR
JSR
JSR

LDAA
EORA
STAA
JSR
JSR
JSR
JSR
LDAB
CMPB
BEQ
JSR
LDAB
STAB

LDAA
JSR
LDAB
INCB
STAB
LDY
JSR
BRA

BRCLR
LDAA
BRA
LDAA
STAA

BRCLR
LDAA
BRA
LDAA
STAA
RTS

$4000

#$4000

INIT
openADC
openLCD

CLR LCD_ BUF

PTT
#$40

PTT

G_LEDS_ON

READ SENSORS
G_LEDS_OFF

READ BUMPERS
DISP_REFRESH
#LCD_REFRESH
MAIN_ CONT
DISPLAY SENSORS
#0

DISP_REFRESH

STATE_CRNT
DISPATCHER
DISP REFRESH

DISP REFRESH
#DLY MAIN
del 50us
MAIN

PORTADO, $04, bowON

#$31
bowOFF
#$30
BUMPER_BOW

PORTADO, $08, sternON

#$31
sternOFF
#3530

BUMPER STERN

7

’
7

; Loop forever

7

Start of program text (FLASH memory)

Initialize the stack pointer
Enable interrupts

Initialize ports

Initialize the ATD

Initialize the LCD

Write space characters to LCD buffer

Enable the guider LEDs
Read the 5 guider sensors
Disable the guider LEDs

and write them to the LCD

150 ms delay to avoid 6000 = 300ms
display artifacts

State Machine
The state machine is made of nine separate system states, and a dispatcher unit to direct program execution. See figures
2 and 3.

UPDATE DISPLAY (etc.)

DISPATCHER LOOP
DISPATCHER

STATE: 0 1 2 3 4 5 6 7 8

| START ‘ ‘ FWD | | REV ‘ sToP ‘ LEFT | ‘ RIGHT | | 180 | | THINK ‘ INTERSECTION

Figure 2: The dispatcher loop.

DLY_FWD :Time going forward
DLY_REV :Time going reverse
DLY_180 : Time for 180 turn
DLY_LEFT : Time for a left turn
DLY_RIGHT : Time for a right turn

FWD_BUMP : Front Bumper actuated
REAR_BUMP : Rear Bumper actuated

TH_MIDDLE : set threshold for SENSOR C on black
TH_LINE_LEFT : set threshold for SENSOR E on white, SENSOR F on black
TH_LINE_RIGHT : set threshold for SENSOR F on white, SENSOR E on black

TH_BOW : set threshold for SENSOR A on black
TH_PORT : set threshold for SENSOR B on black
TH_STAR : set threshold for SENSOR D on black

REAR_BUMP

COMPLETED_180 (HEX) : Stores if a 180 turn was done
FRONT BUMP 005 : There was no 180 turn done
N $01 : There was a 180 turn done

LAST_INTERSECTION (HEX) : Stores the last turn made on an intersection
00$: last turn was a left turn
$01 : last turn was a right turn

! REAR_BUMP

DLY_LEFT THINK\
v DLY_FWD WD

(TH_LINE_RIGHT > SENSOR_LINE)
TH_BOW < SENSOR_BOW

|

|«
—

IF COMPLETED_180 = $00 | | (COMPLETED_180 = $01 && LAST_INTERSECTION = $00)
TH_PORT < SENSOR_PORT /\

TH_PORT < SENSOR_PORT || TH_STAR < SENSOR_STAR FWD_BUMP

DLY_REV

(TH_LINE_LEFT < SENSOR_LINE)

DLY_180
180

DLY_RIGHT

IF COMPLETED_180 = $00 | | (COMPLETED_180 = $01 && LAST_INTERSECTION = $01)
TH_STAR < SENSOR_STAR

Figure 3: The robot state machine.

Dispatcher

The dispatcher directs control to corresponding subroutines based on STATE_CRNT, a variable that stores the current
state, shown in Figure 2.

; Dispatcher

DISPATCHER CMPA #SS_ START ; Start state
BNE NOT_SS_START
JSR STATE START
BRA DISPATCHER EXIT
NOT_SS_START CMPA #SS_STOP ; Stop state
BNE NOT_SS_STOP
JSR STATE STOP
BRA DISPATCHER EXIT
NOT SS STOP CMPA #SS_FWD ; Forward state
BNE NOT SS_FWD
JSR STATE _FWD
BRA DISPATCHER EXIT
NOT SS FWD CMPA #SS REV ; Reverse state
BNE NOT SS_REV
JSR STATE REV
BRA DISPATCHER EXIT
NOT_SS_REV CMPA #SS_LEFT ; Left turn state
BNE NOT SS_LEFT
JSR STATE LEFT
BRA DISPATCHER EXIT
NOT SS LEFT CMPA #SS RIGHT ; Right turn state
BNE NOT_ SS RIGHT
JSR STATE RIGHT
BRA DISPATCHER EXIT
NOT SS_RIGHT CMPA #SS_180 ; Right turn state
BNE NOT SS 180
JSR STATE 180
BRA DISPATCHER EXIT
NOT SS 180 CMPA #SS THINK ; Right turn state
BNE NOT_SS THINK
JSR STATE THINK
BRA DISPATCHER EXIT
NOT SS THINK CMPA #SS INTER ; intersection state
BNE NOT_ SS INTERSECTION
JSR STATE INTERSECTION
BRA DISPATCHER EXIT

NOT_SS INTERSECTION SWI
DISPATCHER EXIT RTS

Stop State

The stop state disables both motors and checks the front bumper for activation, signifying the start of the maze activity.

; Stop State
STATE STOP

NOT START
STOP_EXIT

INIT SS_STOP

Think State

BCLR
BRSET
JSR
MOVB
BRA

NOP
RTS

BCLR
RTS

PTT, 300110000

PORTADO, $04,NOT_START ; Check if front bumper is pushed
INIT SS STOP ; 1f so, initialize stop
#SS_START, STATE_CRNT ; set current tate to start
STOP_EXIT ; exit

PTT, %00110000

The think state is where the bot sets the current system state to intersection if a flag is set; otherwise, it sets the system

state to forward.

; Think State
STATE_THINK

CHK_STAR_INT

GO_FWD

INIT SS_THINK

Start State

BCLR
LDAA
CMPA
BNE
MOVB
RTS

LDAA
CMPA
BNE
MOVB
RTS

MOVB
RTS

BCLR
RTS

PTT,%00110000

PATH PORT ; no left path found
#$01

CHK_STAR INT

#SS_INTER, STATE CRNT

PATH STAR ; no right path found
#501

GO_FWD

#SS_INTER, STATE CRNT

#SS_FWD, STATE CRNT

PTT, 300110000

The start state waits until the forward bumper is released before initializing the forward state.

; Start State
STATE START

NO_FWD
START EXIT

BCLR
BRCLR
MOVB
BRA

NOP
RTS

PTT, 300110000

PORTADO, $08,NO_FWD ; Check if rear bumper is released
#SS_FWD, STATE CRNT ; Set current state to forward
START EXIT

Forward Sate

The forward state is where the front and rear bumpers are polled, intersections are detected, and line tracking is

monitored. This works by first detecting if the rear bumper is active, stopping the bot. Next the front bumper is checked

signifying a dead-end. After that, the left and right sensors are checked for intersections. If one is found, it marks it in

the intersection bytes. At this point, the front sensor is checked and moves the bot forward if it is on a line. If it’s not on

the line, then the line sensor is checked to see if the bot is still centered on the maze path-line. If it’s not, then initiate a

left or right turn to correct. See table 1 for sensor threshold values used.

; Forward State

STATE FWD

NO_STOP

NO REV

PORT NOT BLK

STAR NOT BLK

BOW_IS BLK

FWD EXIT

INIT SS_FWD

BCLR
BRSET
JSR
MOVB
BRA

BRSET
MOVB
BRA

LDAA
CMPA
BHI

BSET
MOVB
MOVB
BRA

LDAA
CMPA
BHI

BSET
MOVB
MOVB
BRA

LDAA
CMPA
BLO

LDAA
CMPA
BLO

LDAA
CMPA
BHI

MOVB
BRA

RTS

BCLR
BSET
LDY
JSR
BCLR
RTS

PTT, $00110000
PORTADO, $08,NO_STOP
INIT SS_STOP
#SS_STOP, STATE CRNT
FWD_EXIT

PORTADO, $04,NO_REV
#SS_REV, STATE_CRNT
FWD EXIT

#TH PORT

SENSOR PORT

PORT NOT_ BLK

PATH PORT, #501

#$31, DEBUG_1
#SS_THINK, STATE CRNT
FWD_EXIT

#TH STAR
SENSOR_STAR

STAR_NOT BLK

PATH STAR, #5$01

#$31, DEBUG_2
#SS_THINK, STATE CRNT
FWD_EXIT

#TH BOW
SENSOR BOW
BOW IS BLK

#TH_LINE_LEFT
SENSOR_LINE
INIT SS RIGHT

#TH LINE RIGHT
SENSOR_LINE
INIT SS LEFT

#SS_THINK, STATE CRNT
INIT SS_FWD

PORTA, %00000011
PTT, %00110000
#DLY FWD

del 50us

PTT, %$00110000

Check if the rear bumper is triggered
Initialize the all stop state
Set the current state to all stop

; Return

Check if the front bumper is active
Set the current state to reverse

; Return

Check 1if left sensor has found a line

If not, then branch
Otherwise mark it on the map

Check if right sensor found a line

If not, then branch
Otherwise mark it on the map

Check if the front is on a line

If it is, branch

Check if line follow is left of line
if th > sensor, start a right turn
Check if line follow is right of line

if th < sensor, start a left turn

On the line

Set both motor directions to forward
Turn on the drive motors

Turn off drive motors

Left State
The left state turns on the right wheel and disables the left allowing for a slow and smooth left turn.

; Left State

STATE LEFT BCLR PORTA, $00000011
BSET PTT, $00100000
BCLR PTT, $00010000
LDY #DLY LEFT
JSR del 50us
BCLR PTT, $00110000
MOVB #SS_THINK, STATE CRNT
RTS

INIT SS LEFT MOVB #SS LEFT, STATE CRNT
RTS

Right State

The right state is identical to the left state, except the active and inactive motors are swapped.

; Right State

STATE RIGHT BCLR PORTA, 500000011
BSET PTT,%00010000
BCLR PTT,%00100000
LDY #DLY RIGHT
JSR del 50us
BCLR PTT, 500110000
MOVB #SS THINK, STATE CRNT
RTS
INIT SS RIGHT MOVB #SS_RIGHT, STATE CRNT
RTS

Intersection State

The intersection state works by first checking if a 180° turn has been performed since the most recent intersection. If it
has, then it clears the intersection flag that contains the turn that the bot had previously made before it made the
incorrect turn. If a 180° turn has not been performed recently, then it does not modify the flags. At this point, the
current state checks which paths have been found and starts a turn in order of priority; left then right. Once a turn is
initiated, the outermost sensor in the direction of travel is checked until it is no longer on a line. At this point, the front
sensor is then checked until it finds the next line where it will discontinue the intersection turn and clear the 180° flag.

; Intersection State

STATE INTERSECTION BCLR PTT,%$00110000
LDAA COMPLETED 180
CMPA #5500
BEQ CHK_PORT
LDAA INTERSEC LAST
CMPA #500
BEQ RMV_STAR
RMV_PORT BCLR PATH PORT, #501
BRA CHK_PORT
RMV_STAR BCLR PATH STAR, #501
CHK_PORT LDAA PATH PORT
CMPA #501
BNE CHK_IF STAR
LDAA #TH_PORT ;a0
CMPA SENSOR_PORT
BHI CHK BOW ; 1f not on line
MOVB #SS_LEFT, STATE CRNT
BCLR INTERSEC_LAST, #$01
MOVB #$30, DEBUG_2
RTS
CHK_BOW LDAA #TH BOW ;a0
CMPA SENSOR_BOW
BLO INTERSECT DONE ; 1f not on line
MOVB #SS_LEFT, STATE CRNT
BCLR INTERSEC LAST, #$01
RTS
CHK IF STAR LDAA PATH STAR
CMPA #501
BNE INTER EXIT
LDAA #TH_STAR
CMPA SENSOR STAR
BHI CHK_BOW2
MOVB #SS_RIGHT, STATE CRNT
BSET INTERSEC_ LAST, #$01
MOVB #$31, DEBUG_2
RTS
CHK_BOW2 LDAA #TH_BOW
CMPA SENSOR_BOW
BLO INTERSECT DONE ; 1f not on line
MOVB #SS_RIGHT, STATE CRNT
BSET INTERSEC_LAST, #$01
RTS
INTERSECT DONE BCLR PATH_ PORT, #501
BCLR PATH STAR, #501
MOVB #$30, DEBUG_1
MOVB #$30, DEBUG_2
MOVB #SS_THINK, STATE CRNT
BCLR COMPLETED 180, #$01
RTS
INTER EXIT MOVB #SS_THINK, STATE CRNT
RTS

Reverse State
The reverse state sets both motors to reverse and drives them for a short period of time before stopping them.

; Reverse State

STATE REV BSET PORTA, 500000011 ; Set both motor directions to reverse
BSET PTT,%00110000 ; Turn on the drive motors
LDY #DLY REV
JSR del 50us
BCLR PTT,%00110000 ; Turn off the drive motors
MOVB #SS 180, STATE CRNT
BRA REV_EXIT ; Return
REV_EXIT RTS
INIT SS REV BSET PORTA, 500000011 ; Set both motor directions to reverse
BSET PTT,%00110000 ; Turn on the drive motors
RTS

180° Turn State
In the 180° turn state, both motors are activated with opposite rotation direction for a short period of time before they
are deactivated again.

; 180 Degree Turn State

STATE 180 BCLR PORTA, $00000001 ; Set both motor directions to reverse
BSET PTT, 00110000 ; Turn on the drive motors
LDY #DLY 180
JSR del 50us
BCLR PTT,%00110000 ; Turn off the drive motors
MOVB #SS_THINK, STATE CRNT
BRA SPIN EXIT ; Return
SPIN EXIT BSET COMPLETED 180, #$01
MOVB #$31,DEBUG71
RTS
INIT SS 180 BCLR PORTA, 500000010 ; Set right motor direction to forward
RTS

System Initialization
This function initializes the ports that will be used in the program.

; Initialization

INIT BCLR DDRAD, $FF ; Make PORTAD an input (DDRAD @ $0272)
BSET DDRA, $FF ; Make PORTA an output (DDRA @ $0002)
BSET DDRB, $11110000 ; Make PORTB an output (DDRB @ $0003)
BSET DDRJ, $11000000 ; Make pins 7,6 of PTJ outputs
BSET DDRT, $01110000
BSET ATDDIEN, $0C
RTS

Software Delay
This routine creates a software delay of 50us.

; Software Delay
del 50us PSHX
eloop LDX #300
iloop NOP
DBNE X,iloop
DBNE Y,eloop
PULX
RTS

ADC Initialization
This routine initializes the ADC, reused from the eebot Guider [2].

; Open ADC

openADC MOVB #5$80, ATDCTL2 ; Turn on ADC (ATDCTLZ2 @ $0082)
LDY #1 ; Waitfor50usforADCtobeready
JSR del 50us ;"=
MOVB #$20,ATDCTL3 ; 4 conversions on channel ANI
MOVB #$97,ATDCTL4 ; 8-bit resolution, prescaler=48
RTS

LCD

The following routines are used to control the Liquid Crystal Display.

Clear Buffer
This routine writes space characters into the LCD display buffer to prepare it for the building of a new display buffer at
the start of the program, reused from the eebot Guider [2].

; Clear Buffer

CLR_LCD_BUF LDX #CLEAR_LINE
LDY #TOP_LINE
JSR STRCPY
CLB_SECOND LDX #CLEAR_LINE
LDY #BOT LINE
JSR STRCPY
CLB_EXIT RTS

10

Copy String
This subroutine copies a null-terminated string from one location to another, reused from the eebot Guider [2].

; Copy String

STRCPY PSHX ; Protect the registers used
PSHY
PSHA

STRCPY LOOP LDAA 0,X ; Get a source character
STAA 0,Y ; Copy it to the destination
BEQ STRCPY EXIT ; If it was the null, then exit
INX ; Else increment the pointers
INY
BRA STRCPY LOOP ; and do it again

STRCPY EXIT PULA ; Restore the registers
PULY
PULX
RTS

Display Sensor

This routine writes the sensor values in hexadecimal to the LCD and uses the ‘shadow buffer’ approach, taken from the
eebot Guider [2]. The physical layout of the data displayed on the LCD is as follows:

FF_MM_LL____CS_

PP.SS_ FR_DD___

Where FF is the front, MM is middle, LL is the line, PP is port, and SS is starboard sensor. CS is the current state, FR is the
front/rear bumper, and DD is for debugging.

Definitions
The corresponding addresses in the LCD buffer are defined in the following equates. The display position is the MSDigit.

; LCD Position Definitions

DP_FRONT_SENSOR TOP_LINE+0
DP_MID SENSOR TOP_LINE+3
DP_LINE_SENSOR TOP_LINE+6
DP_STATE TOP LINE+13
DP_PORT SENSOR BOT LINE+0
DP_STBD_SENSOR BOT LINE+3
DP_BUMPERS BOT LINE+9
DP_DEBUG BOT LINE+13

11

Display
In this subroutine, each dataset is converted to ASCII (if applicable) and rendered onto the LCD it’s defined location.

; Display Sensors

DISPLAY SENSORS LDAA SENSOR BOW ; Get the FRONT sensor value
JSR BIN2ASC
LDX #DP_FRONT SENSOR ; Point to the LCD buffer position
STD 0,X
LDAA SENSOR PORT
JSR BIN2ASC
LDX #DP_PORT SENSOR
STD 0,X
LDAA SENSOR MID
JSR BIN2ASC
LDX #DP_MID SENSOR
STD 0,X
LDAA SENSOR_STAR
JSR BIN2ASC
LDX #DP_STBD_SENSOR
STD 0,X
LDAA SENSOR_LINE
JSR BIN2ASC
LDX #DP LINE_ SENSOR
STD 0,X
LDAA BUMPER_ BOW
LDAB BUMPER STERN
LDX #DP_BUMPERS
STD 0,X
LDAA DEBUG 1
LDAB DEBUG_Z
LDX #DP_DEBUG
STD 0,X
LDAA STATE_CRNT
JSR BIN2ASC
LDX #DPisTATE
STD 0,X
LDAA #CLEAR_HOME
JSR cmd2LCD
LDY #40
JSR del 50us
LDX #TOP_LINE
JSR putsLCD
LDAA #LCD_SEC LINE
JSR LCD_POS CRSR
LDX #BOTiLINE
JSR putsLCD
RTS

12

Initialization
This routine initializes the LCD of 4-bit data width, 2-line display, reused from Lab 2: Programming the I/O Devices [7]. It
turns on the display, cursor off, blinking off, and shifting cursor right.

; Initialize

openLCD BSET DDRB, $11110000 ; set PS pins 7,6,5,4 to output
BSET DDRJ, $11000000 ; configure pins PJ7,PJ6 for output
LDY #2000 ; wait for LCD to be ready
JSR del 50us ; ==
LDAA #INTERFACE ; set 4-bit data, 2-line display
JSR cmd2LCD ; ==
LDAA #CURSOR_OFF ; display on, cursor off, blinking off
JSR cmd2LCD ; ==
LDAA #SHIFT OFF ; move cursor right after character
JSR cmd2LCD ; ==
RTS

Clear

This routine clears the display and home cursor, reused from Lab 2: Programming the 1/O Devices [7].

; Clear LCD

clrLCD LDAA #501 ; clear cursor and return to home
JSR cmd2LCD ; ==
LDY #40 ; wait for "clear cursor" command
JSR del 50us ; ==
RTS

Send Command
This function sends a command in accumulator A to the LCD, reused from Lab 2: Programming the I/O Devices [7].

; Send a command

cmd2LCD BCLR LCD CNTR,LCD RS ; Select the LCD Instruction register
JSR dataMov ; Send data to IR or DR of the LCD
RTS

Print Character
This function outputs the character in accumulator A to LCD, reused from Lab 2: Programming the I/O Devices [7].

; Print a character

putcLCD BSET LCD _CNTR,LCD RS ; select the LCD Data register
JSR dataMov ; send data to IR or DR of the LCD
RTS

Print String

This function outputs a NULL-terminated string pointed to by X, reused from Lab 2: Programming the I/O Devices [7].

; Print a string

putsLCD LDAA 1, X+
BEQ donePS
JSR putcLCD
BRA putsLCD
donePS RTS

13

Send Data
This function sends data to the LCD IR or DR depending on RS, reused from Lab 2: Programming the I/0 Devices [7].

; Send Data

dataMov BSET LCD_CNTR,LCD E ; pull the LCD E-sigal high
STAA LCD_ DAT ; send the upper 4 bits of data to LCD
BCLR LCD CNTR,LCD E ; pull the LCD E-signal low to finish.
LSLA ; match the lower 4 bits with LCD pins
LSLA ; ==
LSLA ; ==
LSLA ; ==
BSET LCD CNTR,LCD E ; pull the LCD E signal high
STAA LCD_DAT ; send the lower 4 bits of data to LCD
BCLR LCD CNTR,LCD E ; pull the LCD E-signal low to finish.
1DY #1 ; adding this delay will finish ops
JSR del 50us ; operation for most instructions
RTS

Position Cursor
This routine positions the display cursor to prepare for the display of a character or string for a 20x2 display, reused from
the eebot Guider [2]. The first line runs from 0 to 19, and the second line runs from 64 to 83.

; Set Cursor Position

LCD _POS CRSR ORAA #%10000000 ; Set the high bit of the control word
JSR cmd2LCD ; and set the cursor address
RTS

Guider

The following routines read the eebot guider sensors and displays the values on the Liquid Crystal Display. The guider
uses four brightness sensors and one differential pair of sensors of photo resistive cells. The voltage across the cells is
measured through the HCS12 A/D converter channel AN1. Therefore, the sensor reading increases as the sensor
becomes darker like when it’s over a black line.

LED’s on/off
This routine enables/disables the guider LEDs by setting/clearing Port A5, reused from the eebot Guider [2]. The readings
of the sensors correspond to the ‘ambient lighting’ situation.

; LED's On
G_LEDS ON BSET PORTA, 500100000 ; Set bit 5
RTS

; LED's Off

G_LEDS OFF BCLR PORTA, $00100000 ; Clear bit 5
RTS

14

Select Sensor

This routine selects the sensor number passed in ACCA, taken from the eebot Guider [2]. Bits PA2, PA3, PA4 are
connected to a 74HC4051 analog mux on the guider board, which selects the guider sensor to be connected to AN1.

Motor direction bits 0, 1, guider sensor select bit 5 and unused bits 6,7 in the same register PORTA are not affected.

; Select Sensor
SELECT SENSOR PSHA

LDAA
ANDA
STAA

PULA
ASLA
ASLA
ANDA

ORAA

STAA
RTS

Read Sensors

PORTA
#%$11100011
TEMP

#%00011100

TEMP
PORTA

Save the sensor number for the moment
Clear the sensor selection bits
and save it into TEMP

Get the sensor number
Shift the selection number left 2x

Clear irrelevant bit positions

OR it into the sensor bit positions
Update the hardware

This routine reads the eebot guider sensors and puts the results in RAM registers, reused from the eebot Guider [2]. The

A/D conversion mode used in this routine is to read the A/D channel AN1 four times into HCS12 data registers ATDDRO,

1,2,3.

; Read Sensors
READ SENSORS CLR
LDX

RS MAIN LOOP LDAA
JSR
LDY
JSR

LDAA
STAA
BRCLR

LDAA
STAA
CPX
BEQ

INC
INX
BRA

RS EXIT RTS

SENSOR_NUM
#SENSOR LINE

SENSOR_NUM
SELECT SENSOR
#400

del 50us

#%$10000001
ATDCTL5
ATDSTATO, $80, *

ATDDROL

0,X
#SENSOR_STAR
RS_EXIT
SENSOR_NUM

RS _MAIN LOOP

15

Select sensor number 0
Point to start of the sensor array

Select the correct sensor input
on the hardware

20 ms delay to allow the

sensor to stabilize

Start A/D conversion on ANI1

; Repeat until A/D signals done

; A/D conversion is complete in ATDDROL

so copy 1t to the sensor register
If this is the last reading
Then exit

; Else, increment the sensor number

and the pointer into the sensor array
and do it again

Binary to ASCII
Converts an 8-bit binary values in ACCA to the equivalent ASCII character to character string in accumulator D using a
table-driven method, reused from the eebot Guider [2].

; Binary to ASCII
HEX TABLE FCC '0123456789ABCDEF"'

BIN2ASC PSHA
TAB
ANDB #%$00001111
CLRA
ADDD #HEX TABLE
XGDX
LDAA 0,X

PULB
PSHA

RORB

RORB

RORB

RORB

ANDB #%00001111
CLRA

ADDD #HEX_TABLE
XGDX

LDAA 0,%

PULB

RTS

System Interrupts
This code section defines the entry interrupt vector for initial execution.

; Reset Vector
SFFFE
DC.W Entry

16

References

(1]

(2]

3]

(4]

(5]

(6]

(7]

P. Hiscocks and V. Geurkov, “Robot Guidance Challenge”, COE538 Microprocessor Systems.
Available: https://www.ecb.torontomu.ca/~courses/coe538/Project/project.pdf [Accessed:
November 23, 2023]

P. Hiscocks and V. Geurkov, “The eebot Guider”, COE538 Microprocessor Systems. Available:
https://www.ecb.torontomu.ca/~courses/coe538/Project/Guider.pdf [Accessed: November 23,
2023]

P. Hiscocks, “State Machines in Software”, Circuit Cellar: The Computer Applications Journal, no.
26, Apr., pp. 52-60, 1992.

P. Spasov, “Section 13.3, Sequential Machines”, in Microcomputer Technology: The 68HC11, 2™
ed., Prentice Hall, 1996.

Motorola, S12CPUV2 Reference Manual Rev. 0, https://motorola.com/semiconducters, Jul.
2003.

H.-W. Huang, HC512/9512: An Introduction to Software and Hardware Interfacing, 2" ed.,
Delmar Cengage Learning, 2010.

P. Hiscocks and V. Geurkov, “Lab 2: Programming the I/O Devices”, COE538 Microprocessor
Systems. Available: https://www.ecb.torontomu.ca/~courses/coe538/Labs/lab2.pdf [Accessed:
November 23, 2023]

17

https://www.ecb.torontomu.ca/~courses/coe538/Project/project.pdf
https://www.ecb.torontomu.ca/~courses/coe538/Project/Guider.pdf
https://motorola.com/semiconducters
https://www.ecb.torontomu.ca/~courses/coe538/Labs/lab2.pdf

Appendix

Table 1: Threshold values used.

Sensor Threshold Values
Variable Name Value
TH_LINE_LEFT SCE

TH_LINE_RIGHT SA8
TH_MIDDLE SAO
TH_BOW SAO
TH_PORT SBO
TH_STAR $60

Table 2: Delay values used.

Delay Values

Variable Name Value Effective Time (ms)
DLY_FWD 2000 100
DLY_LEFT 2000 100

DLY_RIGHT 3250 163
DLY_REV 3500 175
DLY_180 18500 925

DLY_MAIN 250 13

18

	Introduction
	Case Analysis
	Main Loop
	State Machine
	Dispatcher
	Stop State
	Think State
	Start State
	Forward Sate
	Left State
	Right State
	Intersection State
	Reverse State
	180 Turn State

	System Initialization
	Software Delay
	ADC Initialization
	LCD
	Clear Buffer
	Copy String
	Display Sensor
	Definitions
	Display

	Initialization
	Clear
	Send Command
	Print Character
	Print String
	Send Data
	Position Cursor

	Guider
	LED’s on/off
	Select Sensor
	Read Sensors

	Binary to ASCII
	System Interrupts

	References
	Appendix

